The complete mitochondrial genome of *Epeorus herklotsi* (Ephemeroptera: Heptageniidae) and its phylogeny

Xin-Yan Gao, Shu-Sheng Zhang, Le-Ping Zhang, Dan-Na Yu, Jia-Yong Zhang & Hong-Yi Cheng

To cite this article: Xin-Yan Gao, Shu-Sheng Zhang, Le-Ping Zhang, Dan-Na Yu, Jia-Yong Zhang & Hong-Yi Cheng (2018) The complete mitochondrial genome of *Epeorus herklotsi* (Ephemeroptera: Heptageniidae) and its phylogeny, Mitochondrial DNA Part B, 3:1, 303-304, DOI: 10.1080/23802359.2018.1445482

To link to this article: https://doi.org/10.1080/23802359.2018.1445482

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
The complete mitochondrial genome of *Epeorus herklotsi* (Ephemeroptera: Heptageniidae) and its phylogeny

Xin-Yan Gao*, Shu-Sheng Zhang†, Le-Ping Zhang*, Dan-Na Yu*,†, Jia-Yong Zhang*,† and Hong-Yi Cheng*,†

*College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang Province, China; †Zhejiang Wuyanling National Nature Reserve, Taishun, Zhejiang Province, China; ‡Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang Province, China

ABSTRACT

The mitochondrial genome of *Epeorus herklotsi* (Ephemeroptera: Heptageniidae) is a circular molecule of 15,801 bp in length with a base composition of 32.7% A, 32.9% T, 21.5% C, 13.0% G, including extra tRNA^Met^ gene. The IMQM tRNA cluster is found in *E. herklotsi* as well as *Parafornurus youi* and two species of *Epeorus* (KM244708, KJ493406), while the typical IQM tRNA cluster is found in *Paegniodes cupulatus*. In BI and ML phylogenetic trees, the monophyly of the families Heptageniidae, Baetidae, and Ephemereillidae are highly supported. *E. herklotsi* is a sister clade to *Epeorus* sp2. (KJ493406).

ARTICLE HISTORY

Received 7 February 2018
Accepted 13 February 2018

KEYWORDS

Ephemeroptera; mitochondrial genome; *Epeorus herklotsi*; phylogeny

The phylogenetic relationships of Ephemeroptera using morphological or molecular methods still exists disputes (Kristensen 1981; Ogden and Whiting 2003; Zhang et al. 2008; Simon and Hadrys 2013; Li et al. 2014; Misof et al. 2014). Thirteen complete mitochondrial genomes and six partial mitochondrial genomes of Ephemeroptera are available (Zhang et al. 2008; Li et al. 2014; Tang et al. 2014; Zhou et al. 2016). In the 19 known mayfly mitochondrial genomes, gene rearrangements are found in five species (e.g. *Parafornurus youi*, *Epeorus* sp1., *Epeorus* sp2., *Sphiliusinus chinensis*, *Alainites yixiani*), especially in Heptageniidae two types of IQM and IMQM tRNA cluster were found. Hence, we sequenced the mitochondrial genome of *Epeorus herklotsi* (Ephemeroptera: Heptageniidae) to analyse the characteristics of mitochondrial gene arrangement and to discuss the phylogenetic relationships within Ephemeroptera.

The samples of *E. herklotsi* identified by Dr. JY Zhang were collected in Lishui, Zhejiang province, China. All samples of *E. herklotsi* were stored in Lab of HY Cheng, College of Chemistry and Life Science, Zhejiang Normal University. And the genomic DNA was isolated from one leg of *E. herklotsi* using Ezup Column Animal Genomic DNA Purification Kit (Sangon Biotech Company, Shanghai, China). The conserved primers and modified primers for PCR amplification were designed according to Zhang et al. (2008). PCR products were sent to Sangon Biotech Company for sequencing with both strands.

The mt genome of *E. herklotsi* is a circular molecule of 15,801 bp in length, with the overall base composition of 32.7% A, 32.9% T, 21.5% C, 13.0% G, including extra tRNA^Met^ gene. The gene rearrangement with IMQM tRNA cluster was found in *E. herklotsi*, which is similar to *P. youi* (Zhang et al. 2008) and two species of *Epeorus* (KM244708, KJ493406) (Tang et al. 2014), while is different to *Paegniodes cupulatus* with the typical IQM tRNA cluster (Zhou et al. 2016).

Bayesian inference (BI) and maximum likelihood (ML) trees were constructed using the 13 PCGs from 20 species using *S. chinensis* (Li et al. 2014) as outgroup (Figure 1). Each alignment was performed by Gblock 0.91b (Castresana 2000) using default settings in order to select conserved regions of the nucleotide. BI and ML analysis were performed by MrBayes3.1.2 (Huelsenbeck and Ronquist 2001) and RAxML 8.2.0 (Stamatakis 2014), respectively. In BI and ML phylogenetic trees, the monophyly of the families Heptageniidae, Baetidae, and Ephemereillidae is highly supported (Figure 1), but the monophyly of Siphlonuridae is failed. *Siphlonurus* sp. (Siphlonuridae) is a clade sister to *Ameletus* sp. (Ameletidae), however, *Siphlonurus immanis* (Siphlonuridae) is a sister clade to *Ephemerella orientalis* (Ephemeridae). The monophyly of *Epeorus* is highly supported and *E. herklotsi* is a sister clade to *Epeorus* sp2. (KJ493406). In addition, Baetidae (*Baetis* sp. + *Alainites yixiani*) is a sister clade to Teloganodidae which is not consistent with view of Ogden and Whiting (2005). We found the long branch attraction existed in Baetidae, which may affect the phylogenetic relationship of Baetidae.

CONTACT

Hong-Yi Cheng, chy1944@zjnu.cn Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang Province, China

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Acknowledgements

The authors would like to thank Ya-Jie Gao for aid in taxon sampling.

Nucleotide sequence accession number: The complete mitochondrial genome of E. herklotsi has been assigned the GenBank accession number MG870104.

Disclosure statement

The authors declare no conflict of interest.

Funding

This work was supported by Zhejiang Provincial Natural Science Foundation (Grant Y18C040006) and by the National Natural Science Foundation of China (Grant 31370042).

References

