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1  |  INTRODUC TION

Vicariance and dispersal associated with plate tectonics helped 
shape diversification and distribution patterns of biodiversity across 
the planet (Chamberland et al., 2018; Jurado-Rivera et al., 2017; 
Toussaint, Hendrich, et al., 2017). Gradual breakup of ancient su-
percontinents contributed to cladogenetic events, dividing lineages 
by vicariance (see Kim & Farrell, 2015; Sanmartín & Ronquist, 2004; 
Toussaint et al., 2017) and dispersal through corridors that con-
nected land fragments (see Reguero et al., 2014; Seton et al., 2012). 
Thus, vicariant events associated with the Gondwana breakup are 
commonly invoked to explain the disjunct distribution of ancient 
lineages across continents in the southern hemisphere (McCulloch 

et al., 2016; Sanmartín & Ronquist, 2004), while transoceanic disper-
sal would be responsible for this pattern of distribution in more re-
cent lineages (Condamine et al., 2013; Martín-Bravo & Daniel, 2016).

Gondwana breakup occurred gradually and can be divided into 
two phases. The first began in the Early Jurassic (~180 mya), resulting 
in the separation of West Gondwana (South America/Africa) from 
East Gondwana (Madagascar, India, Antarctica, and Australia), ca. 
140 mya (Mueller & Jokat, 2019; Seton et al., 2012; Thompson et al., 
2019). However, it is important to note that southern South America 
was connected to the Antarctic Peninsula through the Weddellian 
Isthmus until the opening of Drake Passage at ca. 35 mya (Elsworth 
et al., 2017). The second phase began in the Early Cretaceous 
(~135  mya), and resulted in the separation between Madagascar/
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Abstract
Atalophlebiinae (Ephemeroptera, Leptophlebiidae) is a mayfly subfamily present 
in temperate and mountainous areas of South America and Australia. We tested 
the hypothesis that both vicariance and dispersal related to the second phase of 
Gondwana breakup—which began in the Early Cretaceous and resulted in the sep-
aration between Madagascar and India from Antarctica and Australia—contributed 
to the origin, diversification, and shaped the current distribution of this group. The 
hypothesis was tested using Bayesian phylogenetic trees, fossil-based molecular 
dating, and ancestral range estimation to reconstruct the biogeography of the line-
ages within this group. The results suggested an origin in the late Gondwana super-
continent for Atalophlebiinae (85.76–136.63 mya) after a vicariant event during the 
Cretaceous period. Subsequently, the lineage diversified into a scenario that refers to 
a Gondwanic corridor formed by South America, Antarctica, and Australia. At the end 
of the separation of the continents that made up the Gondwanic corridor, speciation 
occurred within the current distribution areas. The diversity and current distribution 
of Atalophlebiinae were shaped by complex processes of vicariance, dispersal, and 
speciation within the Gondwanic corridor during the second phase of the supercon-
tinent breakup. Mayflies have difficulty in crossing transoceanic barriers, which sug-
gests that most living taxa are the result of more recent local ecological and historical 
processes.
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India from Antarctica/Australia forming a corridor that connected 
fragments from South America, Antarctica, and Australia at ca. 
100 mya (Gibbons et al., 2013; Seton et al., 2012; Seton et al., 2012; 
Thompson et al., 2019). Concurrently to these events, rupture be-
tween Africa and South America and separation of Madagascar from 
India took place (Gibbons et al., 2013; Seton et al., 2012; Thompson 
et al., 2019).

Atalophlebiinae (Ephemeroptera, Leptophlebiidae) are a cool-
adapted mayfly subfamily with amphinotic distribution, present in 
temperate and mountainous areas of South America and Australia 
(Monjardim et al., 2020; O'Donnell & Jockusch, 2008; Pescador & 
Peters, 1980; Savage, 1987). Previously, researchers also considered 
taxa from tropical areas of South America, Africa, and Madagascar 
as part of this group, suggesting an ancient Gondwana origin of this 
subfamily (Kluge, 2009; Pescador & Peters, 1980; Savage, 1987). 
However, recent studies indicate a monophyletic lineage of only am-
phinotic taxa (Monjardim et al., 2020; O'Donnell & Jockusch, 2008). 
Ephemeroptera is one of the oldest insect lineages (Misof et al., 2014), 
and its amphinotic distribution pattern is recurrent in other taxa of 
the group, such as Ameletopsidae, Coloburiscidae, Nesameletidae, 
and Oniscigastridae (see Edmunds, 1972; Sartori & Brittain, 2015). 
Considering the role of plate tectonics in biogeography and our cur-
rent knowledge of the cool-adapted mayflies, here, we tested the 
hypothesis that Atalophlebiinae originated and diversified under 
the influence of both vicariant and dispersal events, during the sec-
ond phase of Gondwana breakup, which would explain the disjunct 
distribution between South American and Australian taxa and their 
absence in tropical Africa, Madagascar, and Indo-Malayan regions.

2  |  MATERIAL S AND METHODS

2.1  |  Taxon sampling and molecular dataset

We sequenced 76 specimens (Table S1) for two molecular mark-
ers (Table S2): the D2–D5 region of the 28S ribosomal RNA gene 
(Gillespie et al., 2004, 2005) and a partial region of the Cytochrome 
c oxidase subunit 1 gene (Folmer et al., 1994). We also used 59 se-
quences available on GenBank to complement our dataset (Table 
S1). Nine outgroup genera were selected based on a recent phy-
logeny of the Ephemeroptera (Monjardim et al., 2020; Ogden et al., 
2019; O'Donnell & Jockusch, 2008) and the availability of fossils for 
calibration. Our data matrix comprised 19 genera, representing ap-
proximately 55% of the generic composition of Atalophlebiinae. All 
specimens sequenced in this research are stored in the Museu de 
Entomologia of the Universidade Federal de Viçosa, under the care 
of the authors (FFS) or in the Coleção Zoológica Norte Capixaba, 
Universidade Federal do Espírito Santo, Brazil.

2.2  |  Phylogenetic analyses

Sequences were aligned in Geneious 9.0 (www.genei​ous.com), and 
nucleotide substitution models for each marker were selected using 

the Corrected Akaike Information Criterion (AICc) in jModelTest2 
(Darriba et al., 2012) on CIPRES (Miller et al., 2010). Saturation level 
of sequences was verified by Xia's test (Xia et al., 2003) in DAMBE 
7 (Xia, 2018), and the third codon position of COI was consequently 
excluded from the analyses. The concatenated molecular data matrix 
comprised 1622 base pairs (1196 bp from 28S and 426 bp from COI) 
for 97 operational taxonomic units (Alignment S1). Models selected 
for each partition were GTR+G to 28S and TrN+G to COI (Table S3).

Phylogenetic tree was inferred using Bayesian inference in 
MrBayes 3.2.7a (Ronquist et al., 2012) on CIPRES (Miller et al., 2010). 
Eight Markov chain Monte Carlo (MCMC) iterations were run simul-
taneously for 1.58 million generations with sampling trees every 
1000 generations and 25% of burn-in, until the convergence diag-
nostic reached the stop value (standard deviation of split frequen-
cies <0.01). Support of nodes was provided by posterior probabilities 
(PP) as directly estimated from the majority rule consensus topol-
ogy. Considering recent discussions about statistical significance 
(Amrhein et al., 2019; Hurlbert et al., 2019; Pike, 2019; Wasserstein 
et al., 2019), the logic, background knowledge, and experimental de-
sign were considered alongside PP to reach a conclusion and decide 
on its certainty. Therefore, nodes with PP value higher than 0.85 
were considered well-supported.

2.3  |  Divergence times

We used the relaxed uncorrelated lognormal molecular clock with 
a tree prior using the birth–death incomplete sampling algorithm 
(Stadler, 2009). Substitution models for each partition (28S and COI) 
were selected according to AICc (Table S3), and monophyly was 
forced based on BI results. Clock points calibration was based on 
seven date priors based on fossils (n = 5), geological event and prob-
abilities of dispersal (n = 1, adapted from Landis, 2017), and second-
ary data derived from previous analyses (n = 1).

(1) Root was calibrated to represent the minimum and maximum 
(242–290 mya) ages of fossil species Protereisma permianum Sellards 
1907 (Protereismatidae), believed to be one of the stem groups of 
Ephemeroptera (Godunko et al., 2011; Grimaldi & Engel, 2005; Sroka 
et al., 2015), and the mayfly Triassonurus doliiformis Sinitshenkova 
& Papier, 2005 (Siphlonuridae), the lineage with the oldest origin 
in our dataset (Lognormal distribution, offset  =  242.0, Mean  =  8.5, 
Standard deviation = 1.0, mean in real space). (2) Oligoneuriidae ini-
tial diversification was calibrated based on Incogemina nubile Storari 
et al., 2020. (Oligoneuriidae) (Lognormal, offset  =  112.6, M  =  30.0, 
S = 1.0, mean in real space). (3) Leptophlebiidae initial diversification 
was calibrated based on the age of ~175 mya given by Grimaldi and 
Engel (2005) for origin of the family (Normal distribution, Mean=175.0, 
Sigma=25.0). (4) Leptophlebiinae initial diversification was calibrated 
based on the fossil Aureophlebia sinitshenkovae Peters & Peters 2000 
(Leptophlebiinae) (Lognormal, offset = 89.3, M = 20.0, S = 1.0, mean 
in real space). (5) Paraleptophlebia initial diversification was calibrated 
based on the fossil Paraleptophlebia prisca (Pictet & Hagen, 1856) 
(Lognormal, offset = 33.9, M = 13.0, S = 1.0, mean in real space). (6) 
Calibration of the most recent common ancestor of Atalophlebiinae 

http://www.geneious.com
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from the lineage that originated Radima Akers, Peters & Peters, 2003 
(Lognormal, offset = 85.0, M = 21.0, S = 1.0, mean in real space) con-
sidered the final period of separation between Madagascar/India and 
Antarctica/Australia (~100  mya, Gibbons et al., 2013; Seton et al., 
2012; Thompson et al., 2019; White et al., 2013) and low probability 
of dispersal between these areas after separation (see supplementary 
data of Landis, 2017; Sanmartín & Ronquist, 2004). 7) Divergence be-
tween Atalophlebia Eaton, 1881, and Atalomicria Harker, 1954, was 
calibrated with the fossil Atalophlebia culleni Etheridge & Olliff 1890 
(Lognormal, offset = 2.6, M = 20.0, S = 1.0, mean in real space). Fossil 
information can be accessed in the Fossilworks Paleobiology Database 
(http://fossi​lworks.org).

The input file was constructed in BEAUti v2.5.2 and run in 
BEAST2 v2.5.2 (Bouckaert et al., 2019) for 100 million generations 
and trees sampled every 10,000 generations. The convergences 
of runs and the effective sample size (ESS  >  1000) of parameters 
were examined in Tracer v1.7.1 (Rambaut et al., 2018). A tree with 
maximum clade credibility topology, using a burn-in of 25%, was 
constructed with TreeAnnotator v2.5.2, and analyses were run on 
CIPRES (Miller et al., 2010).

2.4  |  Ancestral area reconstruction

As suggested by Ree and Sanmartín (2018), the model for reconstruc-
tion of ancestral areas was chosen to consider the structure and as-
sumptions of models, and not a statistical method that assumes 
probabilistic equivalence between different models (e.g., AIC). We 
selected Dispersal-Extinction-Cladogenesis (DEC; Ree et al., 2005), 
which is a model that allows the incorporation of fossil and geological 
information, and to co-estimate phylogeny as a stochastic process in 
continuous time and incorporates both vicariance and dispersal (Ree 
& Sanmartín, 2018; Ree & Smith, 2008; Ronquist & Sanmartín, 2011).

Genera occurrences were defined by presence or absence in 
South America (A), Madagascar (B), Australia (C), and New Zealand 
(D). Gondwana breakup is well documented (see Bache et al., 2014; 
Elsworth et al., 2017; Mueller & Jokat, 2019; Seton et al., 2012; 
White et al., 2013), and the probability of dispersal was assigned ac-
cording to the availability of connections between areas across four 
time slices: (t1) 108 to 85 mya; (t2) 85 to 50 mya; (t3) 50 to 35 mya; 
and (t4) 35 to 0 mya. As suggested by Landis (2017), the probabil-
ity of dispersal (constrained to sum to 1) was attributed to short-
distances dispersal (s= 0.7); medium-distances dispersal (m  =  0.2); 
and long-distances dispersal (l = 0.1). Thus, probability of medium 
is implied to exist in short, and long-distance dispersal is implied to 
exist between all area pairs. Therefore, short distance has value 1 
(s+m+l) and medium distance has value 0.3 (m+l) (Table S4; adapted 
from Landis, 2017).

Time slices and dispersal probabilities considered five geo-
logical events: the separation between Madagascar/India and 
Antarctica associated with low probability of dispersal after sepa-
ration (~85 mya, supplementary data of Landis, 2017; White et al., 
2013; Gibbons et al., 2013; Sanmartín & Ronquist, 2004); Tasman 

Sea opening (~50 mya, Bache et al., 2014; White et al., 2013); the 
opening of Drake Passage and Tasman Gateway with consequent 
Antarctica glaciation (~35  mya, Elsworth et al., 2017; Scher et al., 
2015). The analyses were run using the “BioGeoBEARS” package 
(Matzke, 2014) on R (R Core Team, 2020) under the RASP interface 
(Yu et al., 2015). The resulting phylogeny from BEAST2 was used as 
a guide tree (consensus tree).

3  |  RESULTS

Bayesian inference recovered Atalophlebiinae as monophyletic with 
high support (Figures 1 and S1) and revealed new phylogenetic re-
lationships among genera in internal clades. Garinjuga Campbell & 
Suter, 1988, appears as sister to all other Atalophlebiinae genera, 
including Massartella Lestage, 1930, which, in turn, is sister to the 
remaining Atalophlebiinae. Two other clades contain genera from 
South America and Australia (Figure 1).

Estimated age for the origin of Atalophlebiinae was 107.83 mya 
[median age, 95% highest posterior density interval (95% HPD): 
85.76–136.63, Figure 1, Table 1, node 1], with initial diversification 
at 94.52 mya (68.53–123.44, Figure 1, Table 1, node 2). Thus, both 
the origin and initial lineage divergence occurred in the Cretaceous, 
during the second phase of Gondwana breakup. The result suggests 
that most living genera originated within their current distribution 
area.

Inference of ancestral areas (Figure 2, Table 1) suggested that 
Atalophlebiinae originated in the Gondwana supercontinent after a 
vicariant event (node 1). Subsequently, this lineage diversified into 
a scenario that refers to the Gondwanic corridor formed by South 
America, Antarctica, and Australia (node 2). Then, vicariance again 
separated the lineage leading to Massartella from the remaining 
Atalophlebiinae at ca. 85  mya (node 3). Other Australian (Jappa 
Harker, 1954 and the clade Atalomicria + Atalophlebia) and South 
American (Penaphlebia Peters & Edmunds, 1972 and the clade 
Massartellopsis Demoulin, 1955 + Meridialaris Peters & Edmunds, 
1972) sister lineages resulted from vicariant events at ca. 57  mya 
(nodes 5, 9).

4  |  DISCUSSION

The topology of Atalophlebiinae herein proposed contains four main 
lineages: Garinjuga from Australia, Massartella from South America, 
and two others with genera from South America and Australia re-
gion (Figures 1, 2, and S1). Garinjuga samples and new sequences 
addition (Table S1) helped to establish the relationship among main 
lineages of the group, which in previous research were unclear 
(see Monjardim et al., 2020). Jappa and Austrophlebioides Campbell 
& Suter, 1988, belong to the clade supported by node 8 (Figures 
1 and 2) diverging from the results of Monjardim et al., (2020). 
This study did not recover any previously proposed clades within 
Atalophlebiinae based on morphological data (see Christidis, 2006; 
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Finlay & Bae, 2008; Pescador & Peters, 1980). Considering that 
they occur in similar environments throughout their distribution, 
and therefore experience similar ecological filters, many species 
may have evolved similar characteristics independently (see Bower 
& Winemiller, 2019). This indicates that some morphological simi-
larities shared between Atalophlebiinae genera may be the result of 
evolutionary convergence.

The results suggest that the most recent common ancestor be-
tween Atalophlebiinae and the lineage that originated the Malagasy 
group (here represented by Radima) lived in Gondwana in the 
Cretaceous period (Figures 1 and 2, Table 1, node 1). These lineages 
diverged allopatrically during the second phase of the superconti-
nent breakup (Gibbons et al., 2013; Seton et al., 2012; Thompson 
et al., 2019), and the vicariant event that promoted speciation is 
probably related to the separation between Madagascar/India from 
Antarctica/Australia. The breakup process between these areas 

began at ca. 135 mya, with the migration of the Indian Plate, culmi-
nating in the opening of the Indian Ocean at ca. 100 mya (Gibbons 
et al., 2013; Seton et al., 2012; Thompson et al., 2019).

The initial divergence in Atalophlebiinae occurs in a scenario 
that refers to the Gondwanian corridor formed by South America, 
Antarctica, and Australia (Reguero et al., 2014; Seton et al., 2012; 
Thompson et al., 2019) during the Upper Cretaceous (Figures 1 
and 2, Table 1, node 2). The ancestor of the Garinjuga lineage was 
probably limited to the geographic area where the divergence oc-
curred (area C), which can be explained, for example, by a peri-
patric speciation, while the remaining lineage (node 3) inherits 
the entire ancestral range and probably increases its distribution 
by dispersal within that range (scenario 3 in Ree et al., 2005). 
Subsequently, a vicariant event isolated an ancestral population 
(node 3) in South America that gave rise to the Massartella lineage. 
Changes in sea level, associated with temperature increase on 

F I G U R E  1  Time-calibrated [millions of years ago (mya)] phylogeny for Atalophlebiinae. Posterior probabilities (PP) referring to Bayesian 
inference tree (Figure S1). HPD: highest posterior density. Nodes used to calibrate tree were identified with specific symbols according 
to type of calibration (top-left box). Node numbers refer to Figure 2 and Table 1. Palaeogeographical maps reconstructed by Scotese's 
PALEOMAP Project available in Global Geology (Scotese & Dreher, 2012)
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the planet, culminated in several cycles of marine transgressions 
in Patagonia during the Upper Cretaceous and Paleocene (Haq, 
2014; Le Roux, 2012a; Malumian & Nanez, 2011; Parras & Griffin, 
2013), which could have prevented dispersal events between 
South America and the Antarctic Peninsula. In addition, the tem-
perature and precipitation calculated for these periods indicates 
a climate warm and humid subtropical temperate in this region 
(Le Roux, 2012b; Varela et al., 2018). This fact may have induced 
mayfly populations to seek colder habitats in mountains, leaving 
the lowlands, which could also have promoted allopatric specia-
tion. Events of the same nature could have also been responsible 
for isolating the lineages that originated Atalophlebia + Atalomicria 
and Jappa in Australia from Massartellopsis + Meridialaris and 
Penaphlebia in South America (node 5 and 9). Thus, marine trans-
gressions and/or climate changes were probably strong enough 
to isolate Atalophlebiinae populations, as this group is adapted to 

cold streams and rivers and is extremely intolerant of saltwater 
(Dos Santos et al., 2018).

Massartella descended from the oldest split which produced one 
lineage presently restricted to South America. Nowadays, it has a 
wide and disjunct distribution on the tabletops of the Pantepui re-
gion and in the mountains of the Atlantic Forest (Domínguez et al., 
2006; Pescador & Peters, 1990). Massartellopsis and Meridialaris spe-
ciated during the uplift of the Andes (Figures 1 and 2, Table 1, node 
6), a region where they are currently found, but where Massartella 
does not occur (Derka et al., 2009; Domínguez et al., 2006; Hoorn 
et al., 2010).

New Zealand emerges as an important factor in the diversifica-
tion of Atalophlebiinae, after events of unclear nature (Figures 1 and 
2, Table 1, node 4 and 8), possibly related to extinction events (or with 
sample gap), during the initial period of its separation from Australia 
(~85 mya) until the opening of the Tasman Sea (~50 mya, see Bache 

TA B L E  1  Combined results of divergence time and ancestral area evolution of Atalophlebiinae based on BEAST2 time tree and Dispersal-
Extinction-Cladogenesis (DEC)

Clade

Divergence time (mya) DEC

Median 95% HPD Ancestral area Probabilities Event

Root 249.95 242.09–266.57 — — —

Oligoneuriidae + Leptophlebiidae 227.69 187.32–257.53 — — —

Oligoneuriidae 134.62 113.24–169.86 — — —

(Chromarcys + Oligoneuria)

Leptophlebiidae 161.68 128.42–193.84 — — —

Leptophlebiinae 97.58 89.77–110.9 — — —

(Leptophlebia + Paraleptophlebia)

Paraleptophlebia 41.36 34.19–54.5 — — —

Node 1 107.83 85.76–136.63 ABC 0.47 Vicariance

Node 2 94.52 68.53–123.44 AC 0.56 Dispersal

Node 3 85.05 60.11–111.87 AC 0.45 Vicariance

Node 4 81.21 58.67–108.4 C 0.39 Dispersal

Node 5 57.18 30.64–83.5 AC 1 Vicariance

Node 6 25.83 6.09–48.3 A 1 s. w. a

Node 7 32.1 11.53–55.45 C 1 s. w. a

Node 8 71.66 49.07–96.49 CD 0.33 Ambiguous

Node 9 57.24 24.60–82.25 AC 1 Vicariance

Node 10 60.79 40.42–83.02 D 0.84 Dispersal

Node 11 54.6 35.45–75.74 CD 0.83 Dispersal

Node 12 52.3 30.55–69.01 CD 0.96 Vicariance

Node 13 39.9 21.37–59.72 C 0.94 Dispersal

Node 14 26.26 9.83–43.26 AC 0.58 Dispersal

Node 15 37.44 20.24–55.71 D 1 s. w. a

Node 16 31.55 13.05–44.72 D 1 s. w. a

Node 17 22.8 5.95–30.78 D 1 s. w. a

Node 18 31.17 8.74–46.21 D 1 s. w. a

Node 19 30.7 8.05–53.74 D 1 s. w. a

Note: Node numbers refer to Figures 1 and 2.
Abbreviations: HPD, highest posterior density; s.w.a., speciation within area.
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et al., 2014). An ancestral population isolated in this region (node 
10) was the origin of the lineage of Neozephlebia Penniket, 1961, 
while another lineage increased its range by dispersal to Australia 
(node 11). Subsequently, peripherical speciation formed the lineage 
(node 19) in New Zealand region, while others (node 12) inherited 
the entire ancestral range and increases distribution by dispersal 
(scenario 3 in Ree et al., 2005). Later, that lineage (node 12) was di-
vided by a vicariant event, probably related to landscape changes 
during the opening of the Tasman Sea and Tasmanian Gateway at ca. 
50–35 mya (see Bache et al., 2014; Scher et al., 2015). After the sep-
aration of the Gondwanic corridor (~35 mya, Elsworth et al., 2017; 
Scher et al., 2015; Seton et al., 2012), speciation occurred within 
the current distribution areas, indicating that Atalophlebiinae was 
unable to disperse across transoceanic barriers and suggests that 
most living taxa are the result of more recent local historical and 
ecological processes.

The biogeographic history of Atalophlebiinae is congruent with 
events that occurred during the second phase of the gradual process 
of Gondwana breakup in the Cretaceous and Paleogene. Our results 
provided evidence that vicariance and dispersal both played roles in 
the history of diversification prior to the completion of the second 

phase of Gondwana breakup. This pattern, together with natural 
extinction processes and its low dispersal capacity across transoce-
anic barriers, may explain its absence in other regions that form the 
circum-Antarctic pattern, such as tropical Africa, Madagascar, and 
India.
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