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Abstract: This work is intended as a general and concise overview of Ephemeroptera biology,
diversity, and services provided to humans and other parts of our global array of freshwater and
terrestrial ecosystems. The Ephemeroptera, or mayflies, are a small but diverse order of amphinotic
insects associated with liquid freshwater worldwide. They are nearly cosmopolitan, except for
Antarctica and some very remote islands. The existence of the subimago stage is unique among
extant insects. Though the winged stages do not have functional mouthparts or digestive systems,
the larval, or nymphal, stages have a variety of feeding approaches—including, but not limited to,
collector-gatherers, filterers, scrapers, and active predators—with each supported by a diversity of
morphological and behavioral adaptations. Mayflies provide direct and indirect services to humans
and other parts of both freshwater and terrestrial ecosystems. In terms of cultural services, they have
provided inspiration to musicians, poets, and other writers, as well as being the namesakes of
various water- and aircraft. They are commemorated by festivals worldwide. Mayflies are especially
important to fishing. Mayflies contribute to the provisioning services of ecosystems in that they
are utilized as food by human cultures worldwide (having one of the highest protein contents
of any edible insect), as laboratory organisms, and as a potential source of antitumor molecules.
They provide regulatory services through their cleaning of freshwater. They provide many essential
supporting services for ecosystems such as bioturbation, bioirrigation, decomposition, nutrition for
many kinds of non-human animals, nutrient cycling and spiraling in freshwaters, nutrient cycling
between aquatic and terrestrial systems, habitat for other organisms, and serving as indicators of
ecosystem health. About 20% of mayfly species worldwide might have a threatened conservation
status due to influences from pollution, invasive alien species, habitat loss and degradation, and
climate change. Even mitigation of negative influences has benefits and tradeoffs, as, in several cases,
sustainable energy production negatively impacts mayflies.

Keywords: aquatic insects; diversity; adaptations; ecology; freshwater systems; terrestrial systems

1. Introduction

Our contribution to the Diversity and Ecosystem Services special issue of this journal focuses
on the amphinotic insect order Ephemeroptera and the varying—but specific—roles these diverse
organisms play in providing direct and indirect services to humans and other parts of our global
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array of freshwater and terrestrial ecosystems. This work is intended as a concise overview that
provides general examples, illustrations, and context. It is not exhaustive. We attempted to balance
communicating the breadth of the extensive information available with providing a concise and
readable summary.

Few other groups of insects may have such a variety of common names as Ephemeroptera. Though
Ephemeroptera are generally referred to as mayflies, they sometimes are called dayflies, shadflies,
or even fishflies. The names of particular species can be vividly descriptive [1], such as the Yellow may
dun (Heptagenia sulphurea (Müller) (Heptageniidae)), or March brown (Rhithrogena germanica Eaton
(Heptageniidae) and Maccaffertium vicarium (Walker) (Heptageniidae)), or of more obscure origin such
as Jenny spinner (Paraleptophlebia mollis (Eaton) (Leptophlebiidae)) or Drake mackerel (Ephemera vulgata
Linnaeus (Ephemeridae)).

As scientific pursuits grow in complexity and necessarily narrow in focus, we risk the danger of
losing sight of the interconnections and broader implications of individual components of ecosystems.
Mayflies spend the majority of their lives under water, out of human sight and mind. Thus, they are an
ecosystem component that easily eludes the continued attention of those not a part of the “guilds”
(borrowing a term from Niko Tinbergen’s Foreword to Dethier’s To Know a Fly [2], and later used here
in another context) of aquatic biologists and others who spend time with them daily.

Mayflies are known best in popular culture for their short-lived adults, which may survive for
only minutes [3]. They also are well-known for their mass emergences, which can cover areas tens
or hundreds of square kilometers in size with swarms estimated to be 125–250 m thick; these are
significant enough to be detected and tracked en masse on weather radar [4,5]. To the angler and
ecologist [6] they are known for serving as patterns for imitations [7] and for being indicators of
environmental quality [8], respectively. However, mayflies also warrant special attention for the many
other important services they provide as constituents of freshwater and terrestrial ecosystems.

2. Biological Attributes of Mayflies

The provision of ecosystem services by mayflies is both enabled and constrained by the biological
attributes of the organisms themselves.

2.1. Life Cycle and General Biology

Mayflies are unique among extant insects by having a subimago stage in their metamorphic cycle
(Figure 1a). The subimago is an active and mobile stage that occurs between the ultimate larval instar
and the mature adult stage, or imago, when present in the life cycle [9]; however, in a few rare cases,
the subimago is the terminal stage in females (e.g., Dolania Edmunds & Traver (Behningiidae) [10],
Prosopistoma Latreille (Prosopistomatidae) [11,12], or even in both sexes (e.g., some Palingeniidae [13]).
This is a remarkable example of reproductive diversity, in that different stages of the order may be the
mature stage of a particular species. In general, the subimago represents the transition from the aquatic
to terrestrial parts of the mayfly species’ lifecycle, sometimes with very large numbers of individuals
emerging simultaneously from the water (e.g., [14]). The subimago molts to the imago stage while
resting on riparian vegetation or, rarely, in the air, mid-flight [15]. Subimagoes and imagoes (Figure 1b)
are notoriously short-lived and therefore have a narrow window of time during which they provide
ecosystem services. With non-functional mouthparts and digestive systems, the imago stage (and
also to a certain extent the subimago) is specialized for dispersal and reproduction. Alate individuals
usually have two pairs of wings, with the hind wings being smaller than the forewings (Figure 1);
a few taxa have only the forewings. Alate stages (Figure 1) have two or three terminal filaments of
varying relative lengths, depending on the taxon in question.

Mayfly species engage in both sexual and parthenogenetic (asexual) reproductive strategies [16].
Most species lay eggs under the water’s surface, though a very few are ovoviviparous (e.g., Callibaetis
Eaton (Baetidae) [17], Cloeon Leach (Baetidae) [18]). Most species are probably univoltine in temperate
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regions, though many may have multiple generations per year, and a few may require two or three
years to complete their life cycle.Insects 2019, 10, x 3 of 26 
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in particular environments (see further discussion below). Fortunately, mayfly larvae are easily 
distinguished from other aquatic insects. The larvae of mayflies usually have three terminal filaments 
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Figure 1. Cloeodes penai (Morihara & Edmunds) (Baetidae, Brazil) male subimago (a) and imago (b).
Photograph courtesy of Frederico Salles.

The strictly aquatic larvae, also called nymphs, are comprised of several instars. The number
of instars that occur during an individual’s life depends primarily on food resources [19] and water
temperature (e.g., [20]). The larvae are common constituents of most freshwater biotopes, both lotic
and lentic, and in some cases can tolerate brackish water at least temporarily [21,22]. The larvae
are found on or in almost all submerged substrates. Their near ubiquity in freshwaters indicates
how widely mayflies are contributing to ecosystem services. Their absence can be an indicator of
problems in particular environments (see further discussion below). Fortunately, mayfly larvae are
easily distinguished from other aquatic insects. The larvae of mayflies usually have three terminal
filaments (e.g., Figures 2–4), though some have two. Larvae have prominent forewing pads (Figure 3);
hindwing pads are much smaller, sometimes being vestigial, or absent. Larvae have ten abdominal
segments, with pairs of articulated gills on at most segments one through seven (Figure 3). The body
lengths (excluding terminal filaments) of the vast majority of species fall between about 2 to 30 mm.
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Figure 2. Dodds’ spiny crawler mayfly, Drunella doddsii (Needham) (Ephemerellidae, USA) in ventral
view; abdominal sternites with rows of setae as a friction disk to adhere to the substrate in a fast
flowing stream.

The larvae of mayflies can be assigned to a variety of feeding groups, or guilds, in aquatic systems.
These feeding groups usually correspond to particular ecosystem services outlined elsewhere in this
paper. A variety of morphological adaptations enable various behaviors and the penetration of specific
microhabitats where services are carried out. Most taxa are collector-gatherers and scrapers, usually
feeding on detritus and periphyton, with bacterial ingestion perhaps also playing an important role
in their nutrition (e.g., [23]). These functions are facilitated by specialized mouthparts. Scrapers,
for example, often have bladelike mandibles. In swift-water habitats, a variety of abdominal adaptations,
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such as friction disks formed by setae (e.g., some Drunella Needham (Ephemerellidae), Figure 2) and
gills (e.g., Rhithrogena Eaton (Heptageniidae), Figure 4), enable individuals to maintain their purchase
while feeding [24]. These collector-gatherer and scraper taxa are generally clinging, sprawling, and
swimming in habit, with these tendencies facilitated by the morphology of their claws and orientation
of legs, generally flattened bodies (Figure 3), or streamlined bodies, respectively.
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Figure 4. Rhithrogena loyolaea Navás (Heptageniidae, Switzerland) in ventral view to show the gills
adapted to function as a suction disk.

Several taxa, such as species of the genera Coloburiscus Eaton (Coloburiscidae), Isonychia Eaton
(Isonychiidae), and Oligoneuria Pictet (Oligoneuriidae) (Figure 5) are filter feeders and may use
rows of setae on their forelegs to capture particulate matter passively; others, such as Arthroplea
Bengtsson (Heptageniidae) may use specialized maxillary palps (Figure 6) to create vortices that
actively concentrate particles from the water column [25], while others yet, such as Ametropus Albarda
(Ametropodidae), may use the forelegs to create such a vortex [26]. Burrowing mayflies have legs and
tusks modified for digging (Figures 7 and 8) in a variety of benthic habitats including clay banks and
heavy muck, and they use their gills to help move water through their burrows in order to collect food
items [27]. Very few of these burrowing taxa, such as Povilla adusta Navás (Polymitarcyidae), bore into
rotting wood, sometimes causing problems with human structures submerged in water [28]. Other
mayfly taxa live and forage on or among sediments; these taxa often have operculate gills (Figure 9)
that protect subjacent gills (e.g., most Caenidae and some Ephemerellidae) or modified abdominal
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segments that protect the gills (e.g., Hyrtanella Allen & Edmunds (Ephemerellidae), Machadorythus
Demoulin (Machadorythidae) Figure 10).Insects 2019, 10, x 5 of 26 
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Other taxa are predators (Figure 11), usually feeding on Chironomidae (Diptera) larvae or other
mayflies (e.g., [29]). A few taxa may be leaf and vegetation shredders [30] (Figure 12). Rarely, mayflies
are considered parasitic, such as the case of Symbiocloeon Müller–Liebenau (Baetidae) on mussels.
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However, this relationship actually is commensal in nature [31]. The association of mayflies with
mussels in this way is a remarkable parallel coincidence when one considers the early developmental
and dispersal biology of mussels, which involves attachment of larvae (glochidia) to fish gills.
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Figure 12. Edmulmeatus grandis Lugo-Ortiz & McCafferty (Baetidae, Madagascar) detail of head in
ventral view; mandibles are cricket-like; this species shreds exclusively on Hydrostachys Thouars
(Cornales: Hydrostachyaceae) aquatic plants and is completely green when alive.

In many cases, the feeding preferences and general habits of mayfly taxa are assumed based
on their morphologies [30] and have not been observed directly. Expanding our knowledge of the
microhabitats, movement, and feeding behaviors of mayflies will help us also to expand our knowledge
of the precise ecosystem services provided by mayflies.
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2.2. Global Diversity and Distribution

Ephemeroptera constitutes a small order of amphinotic insects associated with freshwaters
worldwide, having fewer than 3700 species currently recognized. With origins more than 300 million
years ago [32], it is one of the oldest groups of extant insects and has a relatively long history of
contributing to planetary function.

The monophyly of Ephemeroptera is well-established, but its relationship with Odonata and
Neoptera is not yet consistently resolved (see e.g., [33–35]). The phylogenetic relationships among
mayflies themselves also remain unclear and partially unresolved. Resolution of deep levels of mayfly
phylogeny remains elusive, confounding efforts to form consistent hypotheses about the groups’
adaptive radiations and the general evolution of ecological roles and associated ecosystem services.
Based on molecular data, however, the monotypic family Siphluriscidae is hypothesized to be basal
and the sister-group to all others [36], which is consistent with its many plesiomorphic features. Some
families cluster together with confidence, such as those included in Ephemerelloidea, Caenoidea,
and Fossoriae. Relationships within these broad groupings are not well understood at the moment,
however. Additional molecular, morphological, and behavioral data may shed light on some of these
longstanding problems.

Mayflies can be found in freshwater ecosystems distributed throughout the world. As stated
previously, their near ubiquity is evidence of their wide contribution of ecosystem services, even
though they are a relatively small order. They are absent only from Antarctica and some remote
ocean islands, such as the Tristan da Cunha archipelago [37] or the Falkland/Malvinas Islands [38].
Some arctic and subarctic islands have very low diversity, such as Greenland and Iceland, which are
inhabited by a single species each [39,40].

It has been generally hypothesized that mayflies are poor dispersers, due to their low vagility
and short alate lifespans previously discussed. Recent studies, however, found that some oceanic
and volcanic islands, such as Macaronesia [41,42] and the West Indies [43], have been colonized with
subsequent in situ radiation. Continental islands, such as those that broke off of Gondwana, have
unique lineages; examples of this kind of island include Madagascar, New Caledonia, and Seychelles.

About 20 species generally present Holarctic distributions, either Circumarctic (e.g., Nixe joernensis
(Bengtsson) (Heptageniidae), the Eurasian flat-headed mayfly) or Transpacific (e.g., Baetis bicaudatus
Dodds (Baetidae), Dodds’ small minnow mayfly), whereas more than 40 species have a Pan-American
distribution as a result of the Great American Interchange [44]. Virtually all species from the Oriental,
Afrotropical, Australasian, and Pacific Realms are endemic. The highest generic endemism is found in
the Pacific, Afrotropical, and Australasian Realms.

The highest mayfly diversity is found in the Neotropics with almost 900 described species,
followed by the Palaearctic (830), Nearctic and Oriental (610 and 620 respectively), Afrotropical (440)
Australasian (250), and Pacific (48) (data updated from [45]). In general, diversity is greatest in the
intertropical region and decreases towards the poles. Diversity also generally decreases with an
increase in altitude.

Our knowledge about the diversity of mayflies worldwide is still increasing year after year. Since
the last assessment [45] (about four years ago at the time of this writing), more than 300 new species
have been described, and many still await description, especially in the tropics.

The composition of Ephemeroptera families and genera have changed greatly during the last 25
years, mainly because of the gathering of species into a more phylogenetic system. These narrower
concepts of genera and families better reflect the diversity of the order in terms of how form, function,
and ecosystem services align. Currently, mayfly species are spread among about 40 families (depending
on the classification system used) and more than 460 genera. A few families are monogeneric and
monospecific, namely Austremerellidae (Australia), Machadorythidae (West Africa), Rallidentidae and
Siphlaenigmatidae (New Zealand), and Siphluriscidae (China). More than half of the families contain
fewer than 20 species. The three richest families—Baetidae (110 genera, 1070 species), Heptageniidae
(37, 606), and Leptophlebiidae (147, 718)—encompass two-thirds of all known species. On the generic
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level, four genera possess more than 100 species each: Caenis Stephens (Caenidae) with 164 species,
Baetis Leach (Baetidae) with 158 species, Rhithrogena (Heptageniidae) with 155 species, and Labiobaetis
Novikova & Kluge (Baetidae) with 104 species. No genus has a true cosmopolitan distribution. Among
the most widespread genera, Caenis and Baetis are mentioned from the Australasian Realm by single and
dubious records, whereas Choroterpes Eaton (Leptophlebiidae) reaches only Sulawesi in Australasia [46].
Labiobaetis is only absent from the Neotropics, as was Cloeon until the otherwise Afrotropical species
C. smaeleni Lestage (Baetidae) was recently discovered as introduced to Brazil [47].

Some families resemble one another very closely in different geographic regions, due to convergent
evolution in different radiations of diversity. For example, the widespread family Leptophlebiidae
contains species with forms of gills usually associated with other extant families [3,48].

3. Roles in Ecosystem Services

Ecosystem services are defined as the benefits that people obtain from ecosystems [49]. These services
can be further categorized as either cultural, provisioning, regulating, or supporting services.

3.1. Cultural Services

Cultural services are non-material benefits and are typically difficult to define but include
aesthetic, spiritual or religious values, inspirational and educational uses, and sense of place and
cultural heritage [50].

The cultural significance of mayflies is important but easily overlooked, especially by Western
cultures. Mayflies have been used to illustrate the fleeting and fragile nature of life in literature across
cultures and throughout the ages. The earliest reference to mayflies in a written text can be found
in the Epic of Gilgamesh, which dates from the 18th Century BC [51]. Mayflies and their short adult
stage piqued the interest of early scientific writers such as Aristotle and Pliny the Elder. Chinese
poets, such as Shi Su and An Liu, featured them in verse (see English translations included in [52]).
Their importance in fly-fishing (see below) has led to their inclusion in a number of poems, including
‘To an old friend’ [53] which describes an angler and a trout waiting for the emergence of the first
March brown mayfly of the year. Several music groups have had mayfly as part of their names.

The Tisza mayfly Palingenia longicauda (Olivier) (Palingeniidae) is celebrated in Hungary with an
annual festival. In addition, a monument to the mayfly can be found at Szeged, and the Tiszavirág
(i.e., blossom of the Tisza) bridge over the River Tisza at Szolnok is designed to resemble the mayfly in
flight. Incidentally, the Tisza mayfly features in a Hungarian folk song as a symbol of a man’s love [54].
One of us (LMJ) has visited the annual Bay-Rama Fishfly Festival held in June in New Baltimore,
Michigan, United States of America (USA) (Figure 13); it is an event originally organized more in spite
of the mass mayfly emergences of Ephemeridae from Lake St. Clair, rather than celebrating them.
Another annual festival focused on mayflies occurs annually in Alagoas state, Brazil. These are a few
examples that demonstrate the global cultural awareness of mayflies and the rites of intensification
associated with them.

Mayflies are prominent features in some marketing campaigns. In England, for example, public
houses are named after mayflies, and a number of real ales are named after mayflies. Major corporations
have also employed mayflies as a marketing tool. Nike released a range of ultralight running shoes
called ‘Mayfly’ in 2003, while Vodafone ran an award-winning £100 million marketing campaign in
2006 encouraging viewers to be like a mayfly and ‘make the most of now’.

Mayflies have given their name to a number of vehicles. One of the first attempts at powered
flight was made in 1908 in an aircraft called the Seddon Mayfly, and it was followed in 1910 by the
Bland Mayfly, the first aircraft to be designed by a woman, Lillian Bland. Mayfly was used as the
name for three British Royal Navy ships: a 1907 torpedo boat, an airship in 1911, and a Fly-class river
gunboat in 1915.

The imitation of mayflies to catch fish dates back to the 1st century AD [55]. In 15th century Britain,
patterns for artificial flies to mimic Rhithrogena germanica, Electrogena lateralis (Curtis) (Heptageniidae),
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and Heptagenia sulphurea were being published [56]. Fly-fishing is now a world-wide pastime enjoyed
by millions of people. Various assessments have been made of the economic importance of fly-fishing.
In the United Kingdom, for example, game fishing is worth £498 million to the economy annually [57,58].
In another example from the USA, some 25.4 million people are believed to participate in freshwater
fishing, contributing US$31.4 billion to the USA economy [59].Insects 2019, 10, x 10 of 26 

 

 
Figure 13. Advertising poster from “fishfly” festival in New Baltimore, Michigan, USA, ca. 2004. The 
annual celebration usually coincides with the mass emergence of Ephemeridae from Lake Saint Clair, 
which is located on the Michigan, USA and Ontario, Canada borderline. 

3.2. Provisioning Services 

Provisioning services describe material benefits obtained from ecosystems such as food for 
humans, safe freshwater, and genetic resources [50]. The following paragraphs describe the 
provisioning services in freshwater ecosystems provided by mayflies. 

Despite their generally small size and delicate nature, mayflies are naturally high in protein, 
minerals, B vitamins, and essential amino acids, and low in fat [60] which makes them an important 
component of the human diet in some cultures. Human consumption of mayflies has been 
documented from 10 countries [61]. The mayflies of Lake Victoria are particularly important for local 
inhabitants. Swarms of Caenis kungu Eaton (Caenidae) and Povilla adusta are collected from along the 
shore-line, then either sun-dried and ground into flour, or made into a paste, and subsequently cakes 
and bread [60,62–64]. In a marketplace in a village on the East coast of Madagascar, one of us (MS) 
has seen baskets of Elassoneuria Eaton (Oligoneuriidae) larvae sold as “Mangoro River shrimps”. 
Swarms of Plethogenesia Ulmer (Palingeniidae) are also collected in Papua New Guinea before being 
cooked and eaten [54]. In Indonesia, the Muyu people collect spent mayflies from the surface of rivers 
and creeks using mosquito nets. The catch is packed in wild banana leaves and roasted on embers or 
heated in a pan before being eaten [65]. Whilst adult mayflies are more commonly collected and eaten, 
17th century Incas are reported to have eaten larvae of Euthyplocia Eaton (Euthyplociidae) either raw 
or by incorporating them into a spicy sauce [66]. The Nyishi and Galo tribes of India also used roasted 

Figure 13. Advertising poster from “fishfly” festival in New Baltimore, Michigan, USA, ca. 2004.
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3.2. Provisioning Services

Provisioning services describe material benefits obtained from ecosystems such as food for humans,
safe freshwater, and genetic resources [50]. The following paragraphs describe the provisioning services
in freshwater ecosystems provided by mayflies.

Despite their generally small size and delicate nature, mayflies are naturally high in protein,
minerals, B vitamins, and essential amino acids, and low in fat [60] which makes them an important
component of the human diet in some cultures. Human consumption of mayflies has been documented
from 10 countries [61]. The mayflies of Lake Victoria are particularly important for local inhabitants.
Swarms of Caenis kungu Eaton (Caenidae) and Povilla adusta are collected from along the shore-line,
then either sun-dried and ground into flour, or made into a paste, and subsequently cakes and
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bread [60,62–64]. In a marketplace in a village on the East coast of Madagascar, one of us (MS) has seen
baskets of Elassoneuria Eaton (Oligoneuriidae) larvae sold as “Mangoro River shrimps”. Swarms of
Plethogenesia Ulmer (Palingeniidae) are also collected in Papua New Guinea before being cooked and
eaten [54]. In Indonesia, the Muyu people collect spent mayflies from the surface of rivers and creeks
using mosquito nets. The catch is packed in wild banana leaves and roasted on embers or heated in
a pan before being eaten [65]. Whilst adult mayflies are more commonly collected and eaten, 17th
century Incas are reported to have eaten larvae of Euthyplocia Eaton (Euthyplociidae) either raw or
by incorporating them into a spicy sauce [66]. The Nyishi and Galo tribes of India also used roasted
or boiled larvae of the genus Ephemera Linnaeus (Ephemeridae) to treat stomach disturbances [67].
Alate stages and larvae of Teloganopsis jinghongensis (Xu, You & Hsu) (Ephemerellidae) are eaten in
China [68], having one of the highest protein contents by dry weight of any edible insect [69].

Mayflies are used for more than just food. Low molecular weight chitosan, which has antitumor
activity [70], can be produced from their bodies. Living mayflies, such as the Triangle small minnow
mayfly, Neocloeon triangulifer (McDunnough) (Baetidae), also have important uses. This species has
become an important laboratory model organism, useful for advancing scientific endeavors and
expanding human knowledge (e.g., see review in [71]).

3.3. Regulatory Services

Regulatory services are benefits obtained from processes such as the regulation of climate, water
purification, and pollination [50]. Mayflies contribute, at least in small ways, to the regulatory services
provided by ecosystems in that they process, break down and sometimes remove substances from
water as larvae, as discussed elsewhere in this review. A number of mayfly genera, including some
mentioned previously, filter fine particulate organic material from the water column as a source of
food [72,73]. Mayflies remove substances from water when they emerge as subimagoes. Although
many individuals return to the water and die, some are retained in terrestrial systems via predation or
incidental death.

3.4. Supporting Services

Supporting services are necessary for the production of all other services and include nutrient
cycling and primary production [50]. Mayflies provide many essential services that maintain and
enhance ecosystem function. Burrowing species (e.g., Figure 8) such as Ephemera danica (Müller)
(Ephemeridae), Hexagenia limbata (Serville) (Ephemeridae) (the Michigan Hex) or Campsurus violaceus
Needham & Murphy (Polymitarcyidae) contribute to both bioturbation and bioirrigation by reworking
sediments in rivers and flushing water through their burrows (e.g., [74]). In one study [75], H. limbata
was found to be responsible for up to 98% of the volume of sediment disturbed in Lake Saint Joseph,
Canada. Another study [76] found that bioirrigation and bioturbation by Hexagenia spp. in Lake Erie
resulted in soluble reactive phosphorus flux in the water column.

As just indicated, mayflies contribute in various ways to nutrient cycling (and spiraling) and
energy flow. In a few special cases, mayflies also make a contribution to the decomposition of coarse
woody debris and vegetation. Species from the genera Povilla Navás (Polymitarcyidae) and Asthenopus
Eaton (Polymitarcyidae) burrow into submerged and rotten wood and living plants such as Typha
Linnaeus (Poales: Typhaceae) and Eichornia Kunth (Commelinales: Pontederiaceae) [77,78], sometimes
also causing damage to underwater structures and boats. Filter feeding by mayflies [72] has been
assumed to contribute to water purification.

The abundance of mayflies makes them an important part of the diet of many species other
than humans, as detailed above. As many as 224 species—including a range of other invertebrates
(especially species of Arachnida and Odonata), birds, lizards and other reptiles, amphibians, bats and
other mammals—feed upon mayflies [79–81]. Arguably the most important of these predator-prey
relationships is the contribution of mayflies to the diet of fish. Many people around the world rely upon
freshwater fish as a source of subsistence, not only as food, but also as a driver of the local economy [82].
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The contribution of mayflies to the diet of freshwater fish varies considerably by species. While some
fish species casually or incidentally feed on mayflies, other fish species rely almost exclusively on
mayflies. In one example, 98% of the diet of the Oscar cichlid (Astronotus ocellatus (Agassiz) (Chordata:
Actinopterygii: Cichliformes: Cichlidae)) is made up of mayflies [83].

In being an integral part of the diet of fish and other aquatic animals, mayflies serve as a link in the
flow of energy between primary producers and secondary consumers. They may, for example, scrape
and ingest periphyton from submerged surfaces and then be eaten by fish or other predators. Mayflies
also may collect fine particulate organic matter (FPOM) and make energy and nutrients contained
therein available to higher trophic levels in the aquatic community.

Mayflies not only move nutrients within aquatic ecosystems, but they also move nutrients between
them. This may be important for maintaining a variety of aquatic communities, especially if various
climate forecasts hold true. Some migrations of mayflies may prove to deliver food subsidies from
productive but warming river mainstems to cool but food-limited tributaries, enhancing the resilience
of cool-water predators in warming river networks. Ephemerella maculata Traver (Ephemerellidae),
for example, has been shown to engage in such movements, and it was more important than terrestrial
invertebrate subsidies to the early growth of a trout species [84].

Mayflies also play an important role in the cycling and transfer of nutrients and carbon between
aquatic and terrestrial habitats. Although mayflies grow and develop in aquatic habitats, terrestrial
detritus is the dominant nutrient source for at least the abdomen, head, and wings of the burrowing
mayfly species, Ephemera danica [85]. The sediment, periphyton, and seston also play roles in the
intertwined sources of nutrients for the species. Winged mayflies emerge from the water and enter
the terrestrial realm, where they may be consumed by many riparian species such as birds, bats,
spiders, and lizards (e.g., [79]). This represents, at least in part, their role in transferring matter from
aquatic to terrestrial systems. In this role, however, it is important to consider that they also serve as a
“biotransporter” of potentially problematic substances, such as waterborne contaminants, to terrestrial
ecosystems [86]. Black bears (Ursus americanus) have been observed feeding on piles of dead mayflies in
Canada [87], but more study is needed on this and whether they play any significant role in transferring
contaminants directly to large mammals.

Mayfly larvae also serve as habitat for other organisms. Mayfly species are known to host
commensal bryozoans [88], protozoans [89,90], and chironomid midges [90–94]. They are also hosts to
various fungi [95,96], nematodes [97–104], and trematodes [99,105].

Together with other macroinvertebrates, aquatic insects—especially mayflies—have become an
important tool for monitoring the quality of freshwaters (e.g., see [106–108]) and their associated
terrestrial riparian habitats, due to the essential roles these arthropods play in aquatic ecosystems,
their sensitivity to change, and our increasing abilities to collect and identify them. Mayflies, at the
order and various subordinate taxonomic levels, have become well-known for their use in these efforts
(e.g., [109–112]), which are applied to the protection of both biodiversity and human water supplies
throughout the world (e.g., [113–122]).

Mayflies fulfil the criteria for good indicators because they are: (i) abundant and sufficiently diverse
in their habits and habitats, (ii) sensitive and predictable in their response to changes in environmental
conditions, (iii) relatively easily sampled and identifiable to meaningful taxonomic resolutions, and (iv)
bioaccumulate chemicals such that the pathways of toxins in the environment can be traced [123,124].
As biological indicators, their response to changing conditions is integrated over time and space,
potentially lowering sampling effort and cost compared to the high intensity of sampling often required
when relying on chemical variables to detect certain impacts [125]. An additional benefit, particularly
in economically disadvantaged areas, is the lack of specialized equipment and supplies needed for
collecting mayfly data, in contrast to chemical data [126].

As mentioned previously, mayflies are identified relatively easily to the order level. With minimal
education, mayflies can be further identified to the family level, even in the field after being collected
with simple nets or seines. A South African tool called “miniSASS” (www.minisass.org) is now

www.minisass.org
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implemented in some places on relatively remote Indian Ocean islands and allows a rapid measure of
general river health and water quality by children or adults. In the UK, the Riverfly Partnership has
developed a simple monitoring method, targeted at anglers and other river users, which is now being
used by over 3000 volunteers to monitor around 800 sites [127]. As such, species of Ephemeroptera are
arguably among the most useful bioindicators and provide a scoring index that is easy to use [128].

Mayfly community composition changes in response to alterations of a variety of environmental
variables [129]. Their broad ranges of functional traits and differential tolerances to anthropogenic factors
have been noted widely and are either used, or have the potential for use, in the development of biotic
indices to monitor agricultural practices [130], organic pollution [108,131–133], eutrophication [134,135],
flow quantity [136], acidification [137], mine drainage [138], drought [139], sediment and silt
loading [129,140], pesticide pollution [141], physical habitat alteration [142], invasive species [120],
blooms of cyanobacteria [143] and climate-change vulnerability, particularly in long-lived species,
and those living at higher altitudes and other areas where periods of drought may increase [144–146].
Mayflies also respond to changes in temperature [147–154]. As ‘biosentinels’, aquatic insects have
been used to monitor levels of a variety of heavy metals [155], methylmercury [156], mercury [157,158],
selenite [159], and uranium [160] in freshwater ecosystems. In particular, larvae are sensitive to low
levels of nitrates in the water [161–163] and also to changes in phosphorus [134]. In one example [164],
phosphorus enrichment actually increased mayfly growth rates. Further work is required to determine
whether the species’ sensitivities are due to the increased growth of bacteria on their bodies under
these conditions [165] or to increased cyanobacterial populations, perhaps moreso than to the nutrients
themselves. Regarding changes in pH, it has been found that differential sensitivities exist at the
species level [166]. Acidification, in particular, may play a role in community structure [167].

4. Challenges to Mayfly Services

The continued provisioning of ecosystem services by mayflies is reliant on healthy populations of
the species that deliver them. Global freshwater biodiversity is reported to have declined by 83% since
1970, with greatest losses in the Neotropics, Indo-Pacific, and Afrotropics [168]. Whilst this analysis did
not include invertebrates, we see no reasons to suggest that similar declines have not occurred. Another
study reported that general flying insect biomass has decreased by 76% or more in some areas [169].
Aquatic insect species, in particular, likely are experiencing similar declines. A survey of trout anglers
in southern England reported a perceived 66% reduction in the number of freshwater insects emerging
from chalk streams since the 1970s [170], and in a recent assessment of red lists based on the IUCN
assessment criteria [171] from around the world, 15% of dragonflies and damselflies (Odonata) were
found to be at threat of extinction [172]. Sound evaluations of the conservation status of mayfly species
are generally lacking globally. A few areas, however, have conducted such evaluation. In Switzerland,
for example, a recent red list evaluated 43% of Ephemeroptera as at least endangered [173], whereas in
France, this proportion is 22% [174]. Differing criteria used for evaluation make direct comparisons
between studies difficult, and methods should be evaluated carefully. Some apparently threatened
species are found in habitats that are difficult to study, as is the case for South Carolina, USA [175],
leading to the possibility that some species simply are under-represented in stream samples. Clearly,
more work is needed towards assessing the conservation status of mayfly species worldwide, but the
percentage of imperiled mayfly species may be very near to the percentage of threatened odonates
mentioned above (15%). Besides the loss of species diversity, concern also should be directed towards
decreases in genetic diversity, which may lead to populations that are less able to adapt to changing
conditions and more prone to effects of genetic drift.

The following pressures should be managed to help conserve mayfly populations and by extension,
the ecosystem services they provide.



Insects 2019, 10, 170 14 of 26

4.1. Pollution

Pollution can affect not just the presence and abundance of specific insect taxa but also their ability
to perform ecosystem services through altering their physical status [176] at levels ranging from the
individual to the cellular. Fine sediments cause river impairment with consequences for freshwater
insect abundance [177,178], functional traits [179], biomass [180], and species richness [181]. Even in
cases where pollutants may not affect mayflies directly, individuals that have accumulated pollutants
in their bodies may play a role in problems associated with others parts of ecosystems. For example, as
part of their role in cycling matter between aquatic and terrestrial habitats, mayflies accumulate heavy
metals from the water and sediment and transfer them elsewhere [182]. Heavy metals sometimes
are lost during metamorphosis, however. It also is worthwhile to note that differences in tissue
concentrations may exist between males and females [183]; such differences should be explored, along
with any ramifications associated with differential dispersal of males and females.

Despite the introduction of legislation such as the Water Framework Directive in Europe and
the Clean Water Act (CWA) in the USA, pollution continues to impact water quality in rivers around
the world. Almost half of the sites monitored across Europe continue to suffer from chronic chemical
pollution leading to long-term negative impacts on freshwater organisms [184]. One in ten sites
suffered acute pollution with potentially lethal impacts for freshwater organisms. Sources of pollution
included domestic and industrial sewage effluents and run-off from agriculture and urban areas, with
pesticides posing the most acute risk to freshwater ecosystems. The impact of neonicotinoid pesticides
is particularly worrying (e.g., [185,186]).

Diversity and overall abundance of freshwater invertebrates were significantly reduced in water
chronically polluted with the pesticide imidacloprid [187]. Mayflies, caddisflies, and true-flies are
particularly sensitive to these pesticides; even at low concentrations, there is a considerable risk of
widespread impact on freshwater invertebrate populations [188]. In laboratory tests, half of mayflies
and caddisflies died when exposed to concentrations in the range 0.1–0.3 µg/L; at just 0.03 µg/L 10% of
mayflies died. Sub-lethal effects on invertebrates have also been detected, including changes in feeding
rates, mobility, predation rates, reduced growth, and reduced emergence at levels between 0.3 and
1.5 µg/L [189]. Monitoring of watercourses in the UK has shown surprisingly high concentrations of
imidacloprid in urban catchments, and it is suggested that domestic pet flea (Siphonaptera) treatments
may be the mostly likely source [190].

A recently published study of waters in Australia [191] showed the prevalence and diversity of
pharmaceuticals present in the stream and riparian food webs, especially among aquatic insects and
spiders. More work is needed to study the movement of these compounds through connections of
aquatic and terrestrial food webs; mayflies no doubt play a role here, linking pieces of the landscape
mosaic. Beyond pharmaceutical pollution, general organic pollution may have complex effects;
for example, further research is required to evaluate the importance of reduced zinc bioavailability
associated with increased organic matter and water hardness to the species-poor communities in
organic-contaminated rivers [192].

4.2. Invasive Alien Species

Invasive Alien Species (IAS) are an increasing threat throughout the World. In Europe, many
of these non-native species originate from the Ponto-Caspian region, with over a hundred species
known to have spread from this area to date [193]. The introduction of these non-native species to new
ecosystems ultimately leads to a reduction in species richness and abundance, with mayflies, caddisflies,
freshwater shrimps and other crustaceans particularly vulnerable. A list of 100 of the World’s worst
invasive species features 9 freshwater invertebrates, including the Chinese mitten crab (Eriocheir sinensis
H. Milne-Edwards (Decapoda: Varunidae)), the Fish-hook water flea (Cercopagis pengoi (Ostroumov)
(Cladocera: Cercopagididae)) and Golden apple snail (Pomacaea canaliculata (Lamarck) (Gastropoda:
Ampullariidae)) [194]. In Europe, crayfish species pose a particular threat, especially Signal crayfish
(Pacifastacus leniusculus (Dana) (Decapoda: Astacidae)) and Red swamp crayfish (Procambarus clarkii
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(Girard) (Decapoda: Cambaridae)). The annual cost incurred due to damage caused by and/or the
control of these species has been estimated at €454 million [195]. In the UK, a list of 56 invasive alien
invertebrate species features 24 freshwater species [196], whereas, at the scale of Europe, more than
750 alien freshwater species have been recorded [197].

4.3. Habitat Loss and Degradation

Freshwater habitats are the most extensively and rapidly altered ecosystems on the planet, and they
demonstrate broad response to these modifications, including changes to physical structure, chemistry,
biotic characteristics and ecosystem processes [198].

Continued investment in hydro-power electricity generation is predicted to result in a 21%
decrease in the number of remaining free-flowing rivers around the world. The majority of these
developments are focused on the Amazon in South America, the Ganges in India, and the Yangtze
in China [199]. Once impoundments are established, dam failures pose risks not only for humans
downstream but also for aquatic life, including mayflies, both up- and downstream. This has been
indicated for a recently discovered mayfly species, Tricorythodes tragoedia Souto, Angeli & Salles [200].
River drainage and flood-protection schemes involving the alteration of watercourses also cause
changes to habitat conditions.

Dams and diversions may lead to changed conditions both up- and downstream, resulting in
a changed habitat that may no longer support populations once prevalent [201]. Fragmented and
isolated populations may be more prone to the effects of extreme genetic drift or extirpation when
subjected to sporadic droughts and scouring from floods, which is especially problematic for species
that inhabit marginal, shallow, and erosional zones of streams.

Development of urban areas and transportation infrastructure also impacts freshwater
invertebrates in many ways. Perhaps seldom considered, the steady increase in the intensity and
distribution of lights next to rivers may have a negative impact on populations. The adults of many
species are attracted to light and bankside lights may lure them away from their natural waterside
habitat (e.g., [202]). Similarly, asphalt roads can act as an ecological trap for mayflies, which are attracted
to the horizontally polarized light reflected from their surfaces [203]. Solar panels are known to cause
the same phenomenon [204], and the proliferation of this renewable energy source in recent years is a
cause for concern, from the perspective of Ephemeroptera conservation. Fortunately, relatively simple
mitigation measures can reduce the attractiveness of these panels [205].

A further impact of development is the placing of bridges over watercourses [206]. Upon approaching
a bridge, up to 86% of Long-tailed mayflies (Palingenia longicauda) turn back rather than cross the bridge
to continue upstream [207]. This is particularly problematic as it disrupts the compensatory upstream
mating flight of the mayfly, thus restricting its range in the river. Further studies should explore the
behaviors of other species with respect to bridges. Also, involving roadways in part, salinization
of freshwaters is being seen as an emerging threat [208]. Baseline toxicity studies on pollution with
fracking wastewater on three mayfly species in the Delaware river basin found chronic lethal effects
after exposure over 20–30 days with a concentration of 0.5% produced water. In addition, non-lethal
effects, including reduced reproductive rate and smaller adult size, were observed [209].

Degradation and loss of terrestrial habitat also impact mayfly communities. In addition to declines
in water purification and flood mitigation, terrestrial degradation and loss via water erosion impact
mayfly larvae. As silt and sediment loads increase in water bodies, larval populations of taxa intolerant
to these loads (perhaps the majority of taxa) are challenged, but a few others, such as Caenis and some
Eurylophella Tiensuu (Ephemerellidae) (genera with operculate gills) and many burrowers (which
prefer soft substrate) benefit, either due to competitive release or more abundant potential habitat.

4.4. Climate Change

Climate change is widely recognized as being one of the major long-term threats to biodiversity [210].
Most recent predictions are that the average global temperature will continue to rise as a result of climate
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change, and this will inevitably have an impact on invertebrate populations. Indeed, with the majority
of mayfly species having relatively short life cycles and good powers of mobility, they are likely to be one
of the first groups to show the impact of a changing climate [211,212]. Cold-loving species may retreat
northwards and uphill, while warm-loving species may increase their range [210]. However, many
tropical and equatorial species evolved within narrow thermal regimes and already are living near
their thermal maxima; even slight changes may outpace their ability to move or otherwise adapt [210].
An analysis of European Trichoptera species traits found that the biggest potential impact from
climate change was likely in Southern Europe with up to 30% of the fauna in the Iberic-Macaronesian
region being potentially endangered by climate change [213]. In the UK one study [214] found that
a 3 ◦C rise in temperature could result in a 10–43% reduction in macroinvertebrate abundance in
upland circumneutral streams and lead to the local extinction of at least the Gold-ringed dragonfly
(Cordulegaster boltonii (Donovan) (Odonata: Cordulegastridae)), a caddisfly species (Rhyacophila munda
R. McLachlan (Trichoptera: Rhyacophilidae)), and Pea mussels (species of Pisidium Pfeiffer (Bivalvia:
Sphaeriida: Sphaeriidae)). The Upland summer mayfly (Ameletus inopinatus Eaton (Ameletidae), also
known as the Holarctic comb minnow mayfly)—a predominately montane mayfly species restricted
to coldwater streams—is now absent at many of its historical sites at lower altitudes, and some
evidence suggests that it is being pushed further and further upstream as water temperatures rise [215].
European research using climate change models has shown that the geographical range of this species
is likely to contract with remaining populations predicted to be restricted to the Alps, Scandinavia
and parts of the Scottish Highlands such as the Cairngorms by 2080 [216]. In contrast, another
study [217] found that numbers of emergent Ephemeroptera were unaffected by brownification and
warming, under experimental conditions in a large-scale outdoor pond facility; this may suggest some
differences between potential responses of lentic and lotic mayfly species assemblages that warrant
further investigation.

It is unclear how an expanded season of meltwater will affect mayfly communities in streams
fed in this way. More meltwater may lead to overall cooler conditions for these streams, rather than
warmer conditions, for at least some of the year, and it may possibly lead also to periods of less thermal
fluctuation than normal. All of these changes may pose challenges to the phenologies of species that
have evolved in these streams, especially timing aspects related to egg diapause; alternatively, it might
lead to range expansions or increases in population sizes.

5. Conclusions

Despite being a relatively small order of insects, mayflies deliver a wide variety of direct and
indirect ecosystem services. They are excellent indicators of the condition of their habitats, in addition
to delivering services such as providing food for humans and other animals, reworking sediments,
decomposing wood and other vegetation, and purifying water through filter feeding. Future study of
their feeding behaviors and general habits may reveal further ecosystems services provided by mayflies.

However, the continued provision of these services may be jeopardized by anthropogenic
impacts such as pollution, invasive alien species, habitat loss and degradation, and climate change.
Further efforts to assess the conservation status of mayfly species worldwide are required, and where
appropriate, action should be taken to ensure that species are resilient to these impacts.

Concerted and coordinated actions worldwide to minimize, manage, and mitigate these impacts
are necessary so that future generations may continue to benefit from the services provided
by Ephemeroptera.
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