The Mayfly fauna (Insecta, Ephemeroptera) of the Plitvice Lakes National Park, Croatia

ARTICLE in NATURA CROATICA · DECEMBER 2014

READS
80

7 AUTHORS, INCLUDING:

Jean-Luc Gattolliat
Museum of Zoology Lausanne
70 PUBLICATIONS 448 CITATIONS

Zlatko Mihaljević
University of Zagreb
33 PUBLICATIONS 110 CITATIONS

Mladen Kučinić
University of Zagreb
67 PUBLICATIONS 318 CITATIONS

Michel Sartori
Museum of Zoology, Lausanne, Swit…
145 PUBLICATIONS 652 CITATIONS

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

Available from: Michel Sartori
Retrieved on: 29 November 2015
THE MAYFLY FAUNA (INSECTA, EPHEMEROPTERA) OF THE PLITVICE LAKES NATIONAL PARK, CROATIA

Marina Vilenica1, Jean-Luc Gattolliat2, Marija Ivković4, Mladen Kučinić4, Vlatka Mičetić Stanković4, Zlatko Mihaljević4 & Michel Sartori2,3

1University of Zagreb, Faculty of Teacher Education, Department in Petrinja, Trg Matice hrvatske 12, 44250 Petrinja, Croatia
2Musée cantonal de zoologie, Palais de Rumine – Place de la Riponne 6, 1005 Lausanne, Switzerland
3Biozentrum Grindel und Zoologisches Museum, Universität Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
4University of Zagreb, Faculty of Science, Department of zoology, Rooseveltov trg 6, 10000 Zagreb, Croatia
5Croatian Natural History Museum, Demetrova 1, 10000 Zagreb, Croatia

The mayfly fauna of Plitvice Lakes NP was investigated at 14 sampling sites representing different types of karstic freshwater habitat (springs, streams, tufa barriers and lakes). Specimens were sampled from February 2007 to February 2009 using different methods and 19 taxa were identified. Lotic habitats supported more mayfly species than lentic habitat types. The recorded species, four of which are new for the Croatian fauna, encompass 27 % of the total number of Croatian mayfly fauna. This study represents an important contribution to the knowledge of mayfly fauna of karst habitats in Croatia.

Keywords: Plitvice Lakes NP, mayfly fauna, Ephemeroptera, species richness, karst habitats, Croatia

Ključne riječi: Nacionalni park Plitvička jezera, fauna vodencvjetova, raznolikost vrsta, krška staništa, Hrvatska.
INTRODUCTION

Mayflies are a merolimnic insect order (i.e. with aquatic larval stages and terrestrial adults) that plays a critical role in running and standing waters. They hold an important position in secondary production by being an important food source for diverse freshwater and terrestrial predators (Brittain & Sartori, 2003). In the last decades, human impact on distribution and abundance of many aquatic insects, including mayflies, is becoming more and more evident. During the 20th century, increasing industrialization, population growth, overuse of the natural resources and different types of pollution have greatly damaged many European freshwater ecosystems, equally endangering many species which inhabit them (Belančić et al., 2008; Brittain, 1982). Highly sensitive, confronted with alterations to their habitat, mayfly species are among the first to disappear. Therefore they are important indicators of freshwater health and widely used in bio-monitoring programs all over the world (Brittain & Sartori, 2003; Elliott et al., 1988).

Mayfly fauna of Croatia is still poorly known. The published data are generally only parts of diverse limnological researches (e.g. Filipović, 1976; Matoničkin & Pavletić, 1961, 1963, 1967; Matoničkin, 1959, 1987; Habdija & Primc, 1987; Habdija et al., 1994, 2000, 2004; Žganec, 2005) in which mayflies were investigated as a component of the macro invertebrate fauna. Thus these studies were focused on mayfly larval stages. Although some other aquatic insects in the Plitvice Lakes NP have already been investigated (e.g. Previšić et al., 2007; Popijač & Sivec, 2009; Ivković et al., 2010, 2012; Šemnički et al., 2011), until now and as mentioned above, mayflies were mainly investigated as a component of diverse biocenological researches into lakes and streams (e.g. Kostić-Brnek & Brnek-Kostić, 1965, 1974; Matoničkin, 1959, 1987; Matoničkin & Pavletić, 1963, 1967; Matoničkin et al., 1971; Pavletić & Matoničkin, 1972). Additionally, two dissertations for BSc degrees (Juroš, 1992; Slavkovski, 2006) were conducted on the mayflies of the Park. Juroš (1992) recorded 18 mayfly species while in the more recent study done by Slavkovski (2006), 20 species were registered. Most of the publications do not cite which identification tools were used thus the accurateness of the identifications is questionable. We therefore ignored all the unpublished and unreliable data of the previous researches.

The main objective of our study is to document mayfly species richness of the Plitvice Lakes National Park using different sampling methods.

Study area

Plitvice Lakes National Park is located in the karst region of the Dinarid Mountains in Croatia. The Plitvice Lakes system comprises 16 oligotrophic, dimictic and fluvial lakes divided by tufa barriers. The streams Bijela rijeka and Crna rijeka form the Matica River, which is the main surface-water supplier of the lakes. The area is rich in habitat types of the karst system (Stilinović & Božičević, 1998) and well known for its high endemism, especially in freshwater (Bănărescu, 2004). Plitvice Lakes National Park was placed under the protection of UNESCO as a world natural heritage site in 1979 (Stilinović & Božičević, 1998).

MATERIALS AND METHODS

Mayflies of the Plitvice Lakes NP were studied from February 2007 until February 2009 at 14 sampling sites representing different types of karstic freshwater habitats: springs, streams, tufa barriers and lakes (Fig. 1).
Fig. 1. Map of the researched area. Plitvice lakes NP.

According to their altitudes, lotic habitats were classified into three categories.
1) Upper streams were Crna rijeka and Bijela Rijeka. Different sections of their flow were sampled: spring of Bijela rijeka (720 m), upper reach of Bijela rijeka (716 m), spring of Crna rijeka (675 m), upper reach of Crna rijeka (670 m) and middle reach of Crna rijeka (665 m).
2) Three tufa barriers, situated between upper and lower streams, were: the Labudovac Tufa barrier (630 m), Kozjak-Milanovac Tufa barrier (545 m) and Novakovića Brod Tufa barrier (505 m).

3) Finally, Plitvica Stream (555 m) and River Korana (390 m) were classified as downstream sites.

Diverse microhabitats were sampled and processed. Substrate categories at each sampling site were defined based on AQEM river sampling guidelines (AQEM consortium, 2002). Additionally, accessible microhabitats were sampled at the four lakes: Prošće, Kaluderovac, Ciginovac and Kozjak.

Mayfly larvae were sampled once every month from February 2007 until March 2008 together with other macroinvertebrates, using a Surber sampler (0.0625 m² area and 0.5 mm mesh size). At the site middle reach of Crna rijeka and in the lakes, macroinvertebrates were sampled using a D-frame hand net and 0.5 mm mesh size. All the samples were conserved in 80% ethanol.

Adults were collected from February 2007 until February 2009 using four sided emergence pyramidal traps with a base of 45×45 cm and height of 50 cm. At nine sites (spring of Bijela rijeka, upper reach of Bijela rijeka, spring of Crna rijeka, upper reach of Crna rijeka, Labudovac tufa barrier, Kozjak-Milanovac tufa barrier, Novakovića Brod Tufa barrier, Plitvica Stream and River Korana), traps were fastened to the streambed to allow the free movement of larvae in and out of the sampling area. On each of these sites six traps were placed in diverse microhabitats. At the sites middle reach of Crna rijeka, Lake Prošće, Lake Kaluderovac, Lake Ciginovac and Lake Kozjak floating pyramidal emergence traps (surface area 80×80 cm and height of 80 cm) were used. All together 3 traps were installed on each of these sites. On the top of each pyramidal trap was a container filled with preservative (2% formaldehyde with detergent). During the winter months, with the aim of lowering the freezing point, ethanol was added. All the collected specimens were preserved in 80% ethanol. During the study, the mayfly specimens were collected from each trap once every month.

Additionally, flying adults were occasionally captured using an entomological net.

The collected material (larvae and adults) was identified in the lab using a stereomicroscope (Leica M 295 C) and a microscope (Olympus BX51). Species identification was done using Müller-Liebenau (1969), Elliott & Humpesch (1983), Elliott et al. (1988), Engblom (1996), Studemann et al. (1992), Bauernfeind & Humpesch (2001), Macadam & Bennett (2010), Malzacher (1984) and Haybach (1999).

Data were statistically analyzed using the PRIMER 6 software package (Clarke & Warwick, 2001). Species diversity, uniformity of studied sites and similarity between sites with respect to the mayfly composition and abundance were determined by the Shannon-Weaver (Shannon & Weaver, 1949) and Simpson indices (Simpson, 1949). For estimation of similarity and differences among mayfly composition of the sites NMDS analysis was used. Similarity among the sites was determined using the Bray-Curtis similarity index (Bray & Curtis, 1957).

RESULTS

During the study, 17 293 mayfly specimens (13 609 larvae and 3 684 adults, Tab. 1) were captured and identified. Very young or damaged specimens were identified up to the family or genus level (5 438 specimens). In total, 19 taxa, belonging to 14 genera and
7 families were recorded. Four species are new records for the Croatian mayfly fauna. (Tab. 3). Some of the species were captured only in larval stage, some only as adults, and thus our results indicated the benefits of combining different sampling methods in order to get the most accurate data about the mayfly fauna (Tab. 2).

Lotic habitats supported more mayfly species than lentic sites (Tab. 4). The highest number of species (12) and the highest Shannon - Weaver diversity index was recorded for the study site Plitvica Stream (Fig. 3) while middle reach of Crna rijeka had the highest Simpson index. On the other hand, spring of Bijela rijeka, spring of Crna rijeka and three of the four researched lakes (Kozjak, Ciginovac, Kaluđerovac) had the fewest mayfly species (4) (Tab. 1).

Compared to the other three sampled lakes, Lake Prošće had a very high abundance of mayflies (with 3 565 collected specimens) and a high diversity (6 mayfly species). Additionally, it had the highest number of captured mayfly specimens of all investigated sites (Tab. 3, Tab. 1).

Ephemera danica was the most common species (present in 11 of the 14 sites) while *Caenis horaria* was the most abundant (with 3 391 collected specimens). *Electrogena lateralis* was recorded with the lowest number of specimens (only one) (Tab. 3).
Tab. 2. Mayfly taxa recorded in Plitvice Lakes NP using various sampling methods. Legend: *New species recorded for the Croatian mayfly fauna.

<table>
<thead>
<tr>
<th>Species / Life cycle stage</th>
<th>Larvae</th>
<th>Adults (traps)</th>
<th>Adults (entomological net)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alainites muticus (Linnaeus, 1758)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Baetis alpinus gr.</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Baetis rhodani (Pictet, 1843)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Centroptilum luteolum (Muller, 1776)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Proclœon pennulatum (Eaton, 1870)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Caenis sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caenis horaria (Linnaeus, 1758)*</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seratella ignita (Poda, 1761)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Torleya major (Klapalek, 1905)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemera danica Muller, 1764</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ecdyonurus submontanus Landa 1969*</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhithrogena semicolorata gr.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptophlebiidae juv.</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Habrophlebia lauta Eaton, 1884</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Leptophlebia vespertina (Linnaeus, 1758)*</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Paraleptophlebia submarginata (Stephens, 1835)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Paraleptophlebia werneri Ulmer, 1920*</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Siphlonurus croaticus Ulmer, 1920</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

NMDS analysis (Fig. 2) revealed similarities and differences in mayfly fauna composition between the study sites: upper streams (springs and upper reaches of Crna rijeka and Bijela rijeka) are clustered together. Springs and upper reach of Bijela rijeka are grouped together with the highest similarity of 80%. Downstream sites (Plitvica Stream and River Korana) are clustered together with 60% and with 40% similarity with tufa-barriers.

DISCUSSION

In this study, 19 mayfly taxa were recorded. Fifteen were identified to the species level and two to the species group. No accurate identification of the specimens of the *Rhithrogena semicolorata* species-group and *Baetis alpinus* species-group based on morphological characteristics was possible. Two taxa, in very low numbers, were represented in rather early (not identifiable) instars or in a damaged state and accordingly one was identified to the family and one to the genus level.

Currently, 62 mayfly species are recorded for Croatia (Vilenica et al., in preparation), thus the number of 17 taxa identified to species-level during this study represents 27% of the hitherto known total species number.
Tab. 3. Mayfly species and their abundance at the researched sampling sites in Plitvice Lakes NP. Abbreviations of the sampling sites are given in Fig. 1.

| Taxa/Study site | IBR | SBR | ICR | SCR | CM | KR | PP | KM | LB | NB | PRO | KAL | CIG | KOZ | Σ |
|--|-----|-----|-----|-----|----|----|----|----|----|----|-----|-----|-----|-----|-----|----|
| *Alainites muticus* (Linnaeus, 1758) | 1 | 1 | 0 | 0 | 2 | 218| 189| 0 | 0 | 4 | 0 | 0 | 0 | 0 | 415 |
| *Baetis alpinus* gr. | 31 | 84 | 92 | 102 | 19 | 15 | 276| 0 | 87 | 77 | 0 | 0 | 0 | 0 | 783 |
| *Baetis rhodani* (Pictet, 1843) | 112 | 319 | 62 | 84 | 130| 113| 127| 40 | 24 | 0 | 0 | 0 | 0 | 0 | 1011|
| *Centropilum luteum* (Muller, 1776) | 0 | 0 | 0 | 0 | 545| 688| 2 | 28 | 59 | 207| 13 | 37 | 1 | 1580|
| *Proclœon pennulatum* (Eaton, 1870) | 0 | 0 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
| *Caenis horaria* (Linnaeus, 1758) | 0 | 0 | 0 | 0 | 0 | 0 | 36 | 4 | 3104| 7 | 232 | 8 | 3391|
| *Caenis horaria* (Poda, 1761) | 0 | 0 | 0 | 0 | 25 | 126| 1177| 1 | 1 | 0 | 0 | 0 | 0 | 1330|
| *Torleya major* (Klapalek, 1905) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 | 37 |
| *Ephemerella danica* Muller, 1764 | 0 | 0 | 0 | 1 | 13 | 89 | 240| 25 | 244| 183| 17 | 8 | 19 | 4 | 843 |
| *Ecdyonurus submontanus* Landa, 1969 | 0 | 0 | 0 | 3 | 52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 55 |
| *Electrogena lateralis* Curtis, 1834 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| *Rhithrogena semifigata* gr. | 105 | 516 | 195 | 635 | 96 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1549|
| *Leptophlebiidae* juv. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | 5 |
| *Habrophlebia lata* Eaton, 1884 | 0 | 0 | 0 | 4 | 278| 0 | 130| 0 | 0 | 29 | 0 | 0 | 0 | 441 |
| *Leptophlebia vespertina* (Linnaeus, 1758) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 205 | 0 | 27 | 232 |
| *Paraleptophlebia submarginata* (Stephens, 1835) | 0 | 5 | 0 | 0 | 42 | 2 | 23 | 6 | 42 | 25 | 0 | 0 | 0 | 0 | 145 |
| *Paraleptophlebia werneri* Ulmer, 1920 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 5 |
| *Siphlonurus croaticus* Ulmer, 1920 | 0 | 0 | 0 | 3 | 5 | 0 | 11 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 20 |
| Σ | 249 | 925 | 354 | 832 | 664| 1110| 2867| 74 | 462| 392| 3565| 29 | 315 | 17 | 11855|
Fig. 2. NMDS analysis of the researched localities in Plitvice Lakes NP based on the mayfly fauna composition. Abbreviations of the sampling sites are given in Fig. 1.
Habitat type legend: S = spring; US = upper streams; DS = lower streams; B = tufa barriers; L = lakes.

Compared to the number of recorded mayfly species in the Plitvice Lakes NP, studies on other aquatic insect groups like stoneflies (Popijač & Sivec, 2009; Popijač & Sivec, 2011) and caddisflies (Previšić et al., 2010; Šemnički et al., 2012) revealed greater number of species, 31 and 81 respectively. The mayfly fauna of karst freshwater ecosystems is still generally poorly known and relatively systematic and reliable research in Croatia is still in its beginnings. Study on the mayfly fauna conducted in the lowland karst rivers in neighbouring Slovenia (Hrovat et al., 2009) showed similar results to ours: 26 taxa (20 species) were recorded.

During our research, the highest number of species (12) and the highest Shannon-Weaver diversity index were recorded for the site Plitvica Stream. Since one of the species, Serratella ignita, highly dominated in the abundance at this site (Tab. 3), the Simpson index was not the highest; the highest was at the site middle reach of Crna Rijeka. For this site, the number of recorded species was also high (11) but with the highest evenness in the abundance of each species (Tab. 1).

On the other hand, the springs (spring of Bijela rijeka, spring of Crna rijeka) and three of the four researched lakes (Kaluđerovac, Kozjak, Ciginovac) had the lowest number of mayfly species (Tab. 1). The species richness according to the four main habitat types is presented in Tab. 4. It is obvious that most of the mayfly species prefer lotic habitats which have a greater variety of microhabitats and these are less diversified in spring areas and lentic habitats. Our data confirmed the results of many previous studies (see in: Bauernfeind & Soldán, 2012; Bauernfeind & Humpesch, 2001; Elliott et al., 1988; Berner & Pescador, 1988).

Although the species diversity in still water habitats is generally poor, some limnophilic taxa (Schmedtje & Colling, 1996 in Bauernfeind & Soldán, 2012) can be very
Tab. 4. Mayfly species recorded in different types of freshwater karst habitat in Plitvice Lakes NP.

<table>
<thead>
<tr>
<th>Taxa/Habitat</th>
<th>Springs</th>
<th>Streams</th>
<th>Tufa barriers</th>
<th>Lakes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>upper streams</td>
<td>lower streams</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alainites muticus (Linnaeus, 1758)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Baetis alpinus gr.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Baetis rhodani (Pictet, 1843)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Centroptilum luteolium (Muller, 1776)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Proclœon pennulatum (Eaton, 1870)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Caenis sp. juv.</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caenis horaria (Linnaeus, 1758)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Seratella ignita (Poda, 1761)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Torleya major (Klapalek, 1905)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ephemerula danica Muller, 1764</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ecdyonurus submontanus Landa, 1969</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Electrogena lateralis (Curtis, 1834)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rhithrogena semicolorata gr.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Habrophlebia lauta Eaton, 1884</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Leptophlebia vespertina (Linnaeus, 1758)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Paraleptophlebia submarginata (Stephens, 1835)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Paraleptophlebia werneri Ulmer, 1920</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Siphlonurus croaticus Ulmer, 1920</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Number of species: 5

abundant. Compared to the other three sampled lakes, Lake Prošćé had very high abundance of captured mayfly specimens and a rather high number of mayfly species. In fact, it had the greatest abundance of captured mayfly specimens of all the investigated sites. Most of the specimens were captured in the larval stage and consisted of the species C. horaria (Tab. 1, Tab. 3).

The lowest number of captured mayfly specimens was recorded from the Kozjak-Milanovac tufa barrier as well as from the Lake Kozjak and Lake Kaluđerovac. Most of the mayfly species feed mainly on detritus, periphyton and aquatic vegetation (Brittain, 1982; Engblom, 1996; Elliott & Humpesch, 1983). The reason for such a low number of specimens recorded for the Kozjak-Milanovac tufa barrier and for such a big difference in mayfly abundance between the lakes might be due to the availability of nutrients. Tufa barriers are situated between the lakes and are natural lake outlet habitats. The amount of organic matter decreases downstream along this lake system due to the accumulation of the particles at the barrier’s substrates. Obelić et al. (2005) recorded that the organic matter content in the lake sediments differs between the highest lake, Lake
Prošće and the lowest, Lake Kaluđerovac, in the range from 30% to 4.4% respectively. Our results confirm that the upper lake sustains a richer and more abundant population of Ephemeroptera.

Additionally, a very low number of specimens was recorded in the floating emergence traps that were installed in the lakes researched (Tab. 1). Thus they turned out to be a not very efficient sampling method since part of the emerging specimens would probably crawl under the trap and emerge somewhere else on the water surface.

The species *Ephemera danica* inhabits sandy or gravel beds in the rhithral part of rivers and streams as well as on the shores of oligotrophic lakes (Bauernfeind & Soldán, 2012) and was therefore recorded at most of the study sites.

On the other hand, *Electrogena lateralis* was recorded at a single site and with a single specimen caught in the emergence trap. As its usual microhabitats are submerged roots and rotten logs in a slow current (Bauernfeind & Soldán, 2012), this species was underrepresented in our study probably because this microhabitat was not sampled. Also, it is possible that this species was mainly present in the material of juvenile larvae identified only to the family level. Our results indicate therefore the usefulness of combining different sampling methods in order to get the most accurate data about mayfly fauna (Tab. 2).

Another species that might be present at more sampling sites but was probably found only in rather early (not identifiable) larval instars is *Ecdyonurus submontanus*, recorded from a single stream (Upper and Middle reach of Crna Rijeka). Its known European distribution is quite scattered. Larvae are usually rarely found in the limestone areas and preferably inhabit stony brooks and streams in submontane wooded highlands (Bauernfeind & Soldán, 2012).
Several species recorded in our study have been classified as threatened or endan-
gred taxa in the Red Lists of some countries in Europe, such as Switzerland (WAGNER & SAR
TORI, 2012) and Germany (MALZACHER et al., 1998). Leptophlebia vespertina (in Switzer-
land) and Paraleptophlebia wernerii (in Germany) are listed as critically endangered spe-
cies while Procloeon pennulatum and Torleya major are listed as vulnerable in the Red List of
Swiss mayflies. P. pennulatum, T. major and P. wernerii are species with a patchy distri-
bution all over Europe. Larvae have frequently been recorded from lentic habitats but
may also inhabit brooks and rivers (BAUERNFEIND & SOLDAN, 2012) which was the case
in our study.

Records of L. vespertina in the study area indicate the southern border of its (presently
known) Central European distribution. Larvae of both Leptophlebia species inhabit slow-
flowing, slightly acidic rivers, streams and frequently lakes (BAUERNFEIND & SOLDAN,
2012). In our study, L. vespertina was recorded in two of the four investigated karst lakes
(Lake Prošće and Lake Ciginovac) both in larval and adult stages. Considering the litera-
ture data about the ecological preferences of L. vespertina and E. submontanus, our re-
cords from this karst river system might be interesting for further investigations into the
ecology of these species.

Of all the countries in the Balkan Peninsula, only Bulgaria has an established Red List of
mayflies (RUSSEV, 1992). The list has not been updated for more than twenty years and
may be rather optimistic, thus none of our recorded species were listed among the threat-
ened or potentially threatened mayflies in Bulgaria.

Our records of the species E. submontanus, L. vespertina, P. wernerii and C. horaria in the
freshwater habitats of the Plitvice lakes NP are new for the Croatian mayfly fauna.

According to the mayfly species composition and their abundance at each sampling
site, NMDS analysis revealed the following characteristics (Fig. 2). Although the mayfly
species diversity is generally quite poor in lentic habitats, some taxa can be very abun-
dant. Due to their species composition consisting of taxa of lentic (e.g. C. horaria) or wide
range (e.g. C. luteolum, E. danica) habitat type preferences (BAUERNFEIND & SOLDAN,
2012), the investigated lakes are not distant from any other study site. Leptophlebia vespertina
prefers slow flowing or still water habitats and was recorded only in the lakes. Also, taxa
included in the Rhithrogena semicolorata group inhabit only running water habitats and
so were absent in the lakes.

Due to the presence of the three common mayfly species, Baetis rhodani, B. alpinus
group and Rhithrogena semicolorata group, Upper streams (springs and upper reaches of
Crna rijeka and Bijela rijeka) clustered together. Springs and upper reaches of Bijela rij-
eka are grouped together with the highest similarity of 80%. Upper and middle reaches
of Crna Rijeka have a greater number of mayfly species, thus the similarity with other
upper stream sites is smaller: 60% and 40% respectively. Due to the presence and abun-
dance of the B. rhodani, B. alpinus group, C. luteolum, E. danica and P. submarginata, the
lower reaches of streams (Stream Plitvica and River Korana) are grouped together with
60% and together with tufa-barriers with a similarity of 40%.

Besides the differences in the physical and chemical characteristics of the water (IVKOVIC et al., 2010; 2012), upper and lower streams differed in the composition of their
microhabitats. In the upper streams these consisted mainly of gravel, sand and moss
while in lower streams and tufa barriers habitats consisting of granulated tufa with
detritus and silt mostly dominated. Most of the mayfly species larvae prefer lotic habitats
where they inhabit microhabitats that are different depending on the longitudinal gra-
dient (Elliott et al., 1988; Bauernfeind & Humpesch, 2001). Our results obtained from the mayfly fauna are in accordance with data obtained from physico-chemical analyses of the water (Ivković et al., 2010; 2012), and thus confirm the value of Ephemeroptera as indicator organisms for the aquatic environment.

In conclusion, this study represents an important contribution to the knowledge of mayfly fauna of karst freshwater habitats in Croatia as well as the whole Dinaric karst. Future work will include species identification of taxa listed here under Rhithrogena semicolorata species-group and Baetis hysic species-group. Additionally, mayfly species in the area of Plitvice lakes NP will be studied in connection with their preferences concerning microhabitat and hydric-chemical parameters. As some of the recorded species, like L. Vespertina and E. Submontanus, are not typical for the karst freshwater environment, their ecological requirements will be investigated in more details in the future.

ACKNOWLEDGEMENTS

We would like to thank all our colleagues who have greatly helped with the sampling in the field as well as in the laboratory isolating the numerous macrozoobenthos samples. Many thanks to Ivančica Krulik, Mirjana Jelenčić, Sanja Sviben, Petar Kružić, Igor Stanković, Martina Krbačić, Sanja Žalac, Martina Pavlak, Matija Šimac, Bruna Polak, Andreja Komljenović, Anita Belančić, Mišenko Ivković, Laurent Vuataz. This research was conducted as a part of the following projects: “Arthropod biological diversity in protected karstic habitats in Croatia” (No. 119-1193080-1206) directed by Prof. Dr. Mladen Kučinić (PL) and “Invertebrate taxonomy, ecology and biogeography of Croatian aquatic ecotones” (No. 119-1193080-3076) supervised by Prof. Dr. Mladen Kerovec (PL). Many thanks to Prof. Dr. Mladen Kerovec for his support.

Received February 6, 2014

REFERENCES

Kostić-Brnek, LJ. & Brnek-Kostić, A., 1974: Vode nacionalnog parka Plitvička jezera i život u njima. Plitvička jezera – čovjek i priroda, 37–49. [In Croatian].

Pavletić, Z. & Matoničkin, I., 1972: Struktura bicenoze u rijeci Korani kao dokaz kvalitete vode. Ekologija, 7 (1–2), 59–79. [In Croatian].

SAŽETAK

Fauna vodencvjetova (Insecta, Ephemeroptera)
Nacionalnog parka Plitvička jezera

Vodencvjetovi (Ephemeroptera) su red kukaca koji na svom životnom putu povezuju vodena i kopnenja staništa. Kako kao ličinke žive i kreću se u vodenom okolišu, a nakon emergencije u adulta u kopnenom, izvrstan su izvor hrane čitavom nizu slatkovodnih i kopnenih predatorskih vrsta te važna karika u prijenosu energije između vodenih i kopnenih staništa. Zbog široke rasprostranjenosti, važnosti u akvatičkim hranidbenim mrežama, kompleksnog životnog ciklusa, osjetljivost mnogih vrsta na različita onečišćenja te specifičnih ekoloških zahtjeva, njihova prisutnost i raznolikost vrsta široko se koriste kao indikatori kvalitete vode. Fauna vodencvjetova balkanskog poluoatoka pa tako i Hrvatske, vrlo je slabo istražena.

Za statističku obradu podataka korišteni su Shannon-Weaverov i Simpsonov indeks raznolikosti te NMDS analiza.